Phytochemistry, 1975, Vol. 14, pp. 1140-1141. Pergamon Press. Printed in England.

24-DIHYDRO OBTUSIFOLIOL FROM SORGHUM VULGARE CARYOPSES

BERNARD N. BOWDEN and MICHAEL A. PALMER

Department of Applied Biology, Chelsea College, University of London, Hortensia Road, London SW10 0QX, England

(Received 22 October 1974)

Key Word Index—Sorghum vulgare; Graminae; phytosterols; 24-dihydro obtusifoliol; seeds.

Plant. Sorghum vulgare Pers. DC 36 or Kaffir Corn. Source. Messrs. Gunsons Seeds Pty. Johannesburg, S. Africa. Uses. Widely grown as a tropical and sub-tropical cereal crop. Previous work. None. Plant part examined. The caryopsis or "seed grain".

The caryopses were homogenized and refluxed first in Me_2CO then in a $CHCl_3$ -MeOH mixture [1]. This total lipid extract was purified on a silicic acid column, saponified and the triterpenes and sterols isolated from the unsaponifiable lipid by alumina column chromatography. The sterols were then precipitated with digitonin, regenerated with DMSO [2] and purified by further alumina column chromatography [3]. Silica gel TLC, developed with $CHCl_3$, was used to isolate the 4-monomethyl sterols. These were acetylated and further separated by argentation TLC [4] into three bands. Band 1 (R_f 0·38) containing the 4-

monomethyl sterols with saturated side chains was eluted and separated by GLC on OV-17,QF-1 and SE-33 columns.

Three compounds were distinguished which were further examined by GLC-MS. This showed two of them to be the acetates of 24-methyl and 24ethyl lophenol which have been previously reported from larch leaves [5] and grapefruit peel [6]. The GLC and MS data for the third compound shows it to be the acetate of 24-dihydro obtusifoliol. This compound has not previously been reported from a vascular plant although trace quantities have been found to occur naturally in Chlorella emersonii [7]. The MS of this third compound shows a typical sterol fragmentation pattern with a molecular ion at m/e 470 and the base peak at m/e 395 (M⁺-Me + Ac). Other important ions at m/e 343 (M⁺-SC) and m/e 283 (M⁺-SC + Ac) indicate a sterol with a C₉H₁₉ side chain and

Table 1. GLC and MS data on the monomethyl sterol acetates from Sorghum vulgare

Sterol acetate 24-Dihydro obtusifoliol	GLC Data RR_t (cholesterol acetate = 1.00)			Malandan	MS data, m/e and relative intensities $\binom{0}{0}$				
	OV17*	QF1†	SE33‡	Molecular ion 470 (18)	Other major ions				
					395 (100)	343 (6)	283 (18)	287 (10)	227 (25)
24-Methyl lophenol	1.66	1.45	1.54	456 (100)	381 (25)	329 (7)	269 (90)	287 (9)	227 (45)
24-Ethyl lophenol	2·10	1.77	1.93	470 (90)	395 (25)	329 (8)	269 (100)	287 (10)	227 (35)

^{*3%} OV-17; 225°; N_2 flow rate 40 ml/min; RR_t 5a cholestane to cholesterol and cholesteryl acetate 0·37 and 0·26 respectively. †2·5% QF-1; 205°; N_2 flow rate 25 ml/min; RR_t 5a cholestane to cholesteryl acetate 0·21. ‡1% SE-33; 225°; N_2 flow rate 25 ml/min RR_t 5a cholestane to cholesteryl acetate 0·34. All stationary phases used 80–100 mesh gas chrom Q as support.

an additional nuclear methyl group. Ions at m/e 287 and 227 show that this methyl group is situated on C-14. The longer RR₁ of this compound on QF-1 than on the two less polar phases is additional evidence for the placing of this methyl group [8].

This sterol must possess either a double bond in the nucleus or a 9B-19 cyclopropane ring as it has an M⁺ of 470 and a saturated side chain. The absence of an m/e 302 fragment indicates a double bond. The RR_t of this third compound is much lower than that of 24-ethyl lophenol which has the same molecular weight and a Δ^7 double bond (Table 1). Conversely, obtusifoliol, which has a Δ^8 double bond has a very similar RR_t to the third compound. This GLC data is taken as positive evidence for the presence of a Δ^8 bond. The MS was also characteristic of a Δ^8 sterol in having few intense peaks.

Acknowledgements—The authors thank Dr. L. J. Goad and Mr. R. Redmond for all their help and advice and the University of London for a Central Research Fund grant awarded to B.N.B. and a University Postgraduate Studentship to M.A.P.

REFERENCES

- Folch, J., Lees, M. and Stanley, G. Sloane (1957) J. Biol. Chem. 226, 497.
- Issidorides, C., Kitagawa, I. and Mosettig, E. (1962) J. Org. Chem. 27, 4693.
- 3. Goad, L. J. and Goodwin, T. W. (1966) Biochem. J. 99, 735.
- 4. Vroman, H. and Cohen, C. (1967) J. Lipid Res. 8, 150.
- Goad, L. J. and Goodwin, T. W. (1967) Eur. J. Biochem. 1, 357.
- Williams, B., Goad, L. J. and Goodwin, T. W. (1967) Phytochemistry 6, 1137.
- 7. Doyle, P., Patterson, G., Dutky, S. and Thompson, M. (1972) *Phytochemistry* 11, 1951.
- 8. Patterson, G. (1971) Anal. Chem. 43, 1165.